28 Views

Question : The ratio of the sides of a triangle is 3 : 3 : 4. If the area of a triangle is $32 \sqrt{5}$ cm2, then what is the length of the equal sides?

Option 1: 12 cm

Option 2: 16 cm

Option 3: 10 cm

Option 4: 15 cm


Team Careers360 3rd Jan, 2024
Answer (1)
Team Careers360 14th Jan, 2024

Correct Answer: 12 cm


Solution : Let the sides be $3k$, $3k$, and $4k$.
So, semi perimeter, $s = \frac{a+b+c}{2}$ = $\frac{3k+3k+4k}{2}=\frac{10k}{2}={5k}$
Now, $A = \sqrt{s(s - a)(s - b)(s - c)}$
⇒ 32$\sqrt{5}$ = $\sqrt{5k(5k - 3k)(5k - 3k)(5k - 4k)}$
⇒ 32$\sqrt{5}$ = $\sqrt{5k(2k)(2k)( k)}$
⇒ 32$\sqrt{5}$ = $\sqrt{20k^4}$
⇒ (32$\sqrt{5})^2$ = ${20k^4}$
⇒ 1024 × 5 = ${20k^4}$
⇒ 5120 = ${20k^4}$
⇒ ${k^4}$ = 256
⇒ $k$ = 4
Length of equal sides $=3k= 3×4=12$ cm
Therefore, the length of each of the equal sides is 12 cm.
Hence, the correct answer is 12 cm.

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books