Question : The simplified value of (0.2)3 × 400 ÷ 2000 of (0.2)2 is:
Option 1: $\frac{1}{25}$
Option 2: $\frac{3}{25}$
Option 3: $\frac{2}{25}$
Option 4: $\frac{1}{50}$
Correct Answer: $\frac{1}{25}$
Solution : (0.2)3 × 400 ÷ 2000 of (0.2)2 = (0.2)3 × 400 ÷ (2000 × $\frac{4}{100}$) = $\frac{8}{1000}$ × 400 ÷ 80 = $\frac{8}{1000}$ × 5 = $\frac{1}{125}$ × 5 = $\frac{1}{25}$ Hence, the correct answer is $\frac{1}{25}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{\left(1 \frac{1}{9} × 1 \frac{1}{20} ÷ \frac{21}{38}-\frac{1}{3}\right) ÷\left(2 \frac{4}{9} ÷ 1 \frac{7}{15} \text { of } \frac{3}{5}\right)}{\frac{1}{5} \text { of } \frac{1}{5} ÷ \frac{1}{125}-\frac{1}{25} ÷ \frac{1}{5} \text { of } \frac{1}{5}}$ lies between ____.
Option 1: 0.1 and 0.15
Option 2: 0.2 and 0.25
Option 3: 0.15 and 0.2
Option 4: 0.25 and 0.3
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Option 1: $\frac{5}{13}$
Option 2: $\frac{4}{13}$
Option 3: $\frac{8}{13}$
Option 4: $\frac{6}{13}$
Question : If the equation k(21x2 + 24) + rx + (14x2 – 9) = 0, k(7x2 + 8) + px + (2x2 – 3) = 0 have both roots common, then the value of $\frac{p}{r}$ is:
Option 1: $\frac{1}{3}$
Option 2: $\frac{2}{5}$
Option 3: $\frac{4}{3}$
Option 4: $\frac{7}{5}$
Question : What is the simplified value of: $7 \frac{1}{3} \div 2 \frac{1}{2}$ of $1 \frac{3}{5}-\left(\frac{3}{8}+\frac{1}{7} \times 1 \frac{3}{4}\right)-\frac{5}{24}$
Option 1: $1$
Option 2: $2$
Option 3: $\frac{1}{24}$
Option 4: $\frac{1}{12}$
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Option 1: $\frac{25}{6}$
Option 2: $\frac{14}{3}$
Option 3: $\frac{17}{9}$
Option 4: $\frac{49}{12}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile