Question : The simplified value of $(\sqrt{3}+1)( 10+\sqrt{12})(\sqrt{12}-2)(5-\sqrt{3})$ is:
Option 1: 16
Option 2: 88
Option 3: 176
Option 4: 132
Correct Answer: 176
Solution : Given: $(\sqrt{3}+1)( 10+\sqrt{12})(\sqrt{12}-2)(5-\sqrt{3})$ ⇒ $(\sqrt{3}+1)( 10+2\sqrt{3})(2\sqrt{3}-2)(5-\sqrt{3})$ ⇒ $(\sqrt{3}+1)×2(5+\sqrt{3})×2(\sqrt{3}-1)×(5-\sqrt{3})$ ⇒ $4(\sqrt{3}+1)(\sqrt{3}-1)(5+\sqrt{3})(5-\sqrt{3})$ We know that, $a^2-b^2=(a+b)(a-b)$ Thus, = $4(3-1)(25-3)$ = $4×2×22$ = $176$ Hence, the correct answer is 176.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $a-\frac{1}{a}=4$, then the value of $a+\frac{1}{a}$ is:
Option 1: $5 \sqrt{5}$
Option 2: $4 \sqrt{5}$
Option 3: $2 \sqrt{5}$
Option 4: $3 \sqrt{5}$
Question : If $\sqrt{0.04\times 0.4\times a}=0.004\times 0.4\times \sqrt{b},$ then the value of $\frac{a}{b}$ is:
Option 1: $16\times 10^{-3}$
Option 2: $16\times 10^{-4}$
Option 3: $16\times 10^{-5}$
Option 4: $16 \times 10^{-6}$
Question : What is the value of the positive square root of $(69+28\sqrt{5})$?
Option 1: $(7+2\sqrt{5})$
Option 2: $(7-2\sqrt{5})$
Option 3: $(2+7\sqrt{5})$
Option 4: $(2-7\sqrt{5})$
Question : The smallest among $\sqrt[6]{12},\sqrt[3]{4},\sqrt[4]{5},\sqrt3$ is:
Option 1: $\sqrt[6]{12}$
Option 2: $\sqrt[3]{4}$
Option 3: $\sqrt3$
Option 4: $\sqrt[4]{5}$
Question : The simplified value of $\sqrt{900} + \sqrt{0.09} - \sqrt{0.000009}$ is:
Option 1: $30.27$
Option 2: $30.297$
Option 3: $30.097$
Option 4: $30.197$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile