Question : The speeds of two bodies are in the ratio 2 : 3. If the difference in the time taken to cover 50 m is 10 sec, then find the difference in their speeds.
Option 1: $\frac{8}{9} \mathrm{~m} / \mathrm{sec}$
Option 2: $\frac{5}{6} \mathrm{~m} / \mathrm{sec}$
Option 3: $\frac{6}{5} \mathrm{~m} / \mathrm{sec}$
Option 4: $\frac{7}{5} \mathrm{~m} / \mathrm{sec}$
Correct Answer: $\frac{5}{6} \mathrm{~m} / \mathrm{sec}$
Solution : Let the speed of two bodies be $2x$ and $3x$. Time taken by first body = $\frac{50}{2x}$ Time taken by second body = $\frac{50}{3x}$ According to the question, $\frac{50}{2x}-\frac{50}{3x}=10$ ⇒ $\frac{150-100}{6x}=10$ ⇒ $50=60x$ ⇒ $x=\frac{50}{60}=\frac{5}{6}$ Hence, the correct answer is $\frac{5}{6} \mathrm{~m} / \mathrm{sec}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : The greatest fraction among $\frac{2}{3}, \frac{5}{6}, \frac{11}{15} \text{ and } \frac{7}{8} \text{ is:}$
Option 1: $\frac{7}{8}$
Option 2: $\frac{11}{15}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{2}{3}$
Question : If $\sec A - \tan A = p$, then find the value of $\sec A$.
Option 1: $\frac{p^2-1}{p^2+1}$
Option 2: $\frac{\mathrm{p}^2+1}{\mathrm{p}^2-1}$
Option 3: $\frac{\mathrm{p}^2+1}{\mathrm{p}}$
Option 4: $\frac{\mathrm{p}^2+1}{2 \mathrm{p}}$
Question : The total surface area of a cone whose radius is 3 cm and height is 4 cm is:
Option 1: $\frac{425}{7} \mathrm{~cm}^2$
Option 2: $\frac{501}{9} \mathrm{~cm}^2$
Option 3: $\frac{475}{8} \mathrm{~cm}^2$
Option 4: $\frac{528}{7} \mathrm{~cm}^2$
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Option 1: 5
Option 2: 4
Option 3: 3
Option 4: 2
Question : The heights of two right circular cones are in the ratio 1 : 5 and the perimeter of their bases are in the ratio 5 : 3. Find the ratio of their volumes.
Option 1: 8 : 11
Option 2: 7 : 6
Option 3: 5 : 9
Option 4: 3 : 4
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile