Question : The value of $\left(\operatorname{cosec}^2 B-1\right)\left(\sec ^2 B-1\right)$ is:
Option 1: 4
Option 2: 3
Option 3: 2
Option 4: 1
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $\left(\operatorname{cosec}^2 B-1\right)\left(\sec ^2 B-1\right)$ We know that $\operatorname{cosec}^2 B = 1 + \cot^2 B$ $\sec^2 B = 1 + \tan^2 B$ $\left(\operatorname{cosec}^2 B-1\right)\left(\sec ^2 B-1\right) = \cot^2 B\times\tan^2 B$. $=\cot^2 B \times \tan^2 B = \frac{1}{\tan^2 B}\times\tan^2 B = 1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Option 1: $2 \cos A$
Option 2: $\sec A$
Option 3: $2\cos A$
Option 4: $2 \sec A$
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Option 1: $2 \sec \theta$
Option 2: $2 \operatorname{cosec} \theta$
Option 3: $2 \cot \theta$
Option 4: $\operatorname{cosec} \theta+\cot \theta$
Question : The value of $\frac{1+\sin A}{\cos A}+\frac{\cos A}{1+\sin A}$ is:
Option 1: $2 \sec A$
Option 2: $2 \operatorname{cosec} A$
Option 3: $ \sec A$
Option 4: $ \operatorname{cosec} A$
Question : What is the value of $\frac{1+\tan A}{\operatorname{cosec} A}+\frac{1+\cot A}{\sec A}$?
Option 1: $2\sec^2A$
Option 2: $\sec \mathrm{A} - \mathrm{cosec A}$
Option 3: $\sec \mathrm{A} + \mathrm{cosec A}$
Option 4: $2 \;\mathrm{cosec^2 A}$
Question : The given expression is equal to: $\frac{\left(1+\tan^2 A\right)}{\operatorname{cosec}^2 A \cdot \tan A}$
Option 1: $\sec^2A$
Option 3: $\tan A$
Option 4: $\tan^2A$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile