Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Option 1: $\sec \theta$
Option 2: $\sin \theta$
Option 3: $\cot \theta$
Option 4: $\tan \theta$
Correct Answer: $\cot \theta$
Solution : $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ $=\frac{\cos \theta (2 \cos^2 \theta - 1)}{\sin \theta (1 - 2 \sin^2 \theta)}$ We know that $\cos2 \theta = 1 - 2\sin^2 \theta= 2 \cos^2 \theta-1$, Substituting these identities into the expression, $=\frac{\cos \theta \cos2 \theta}{\sin \theta \cos2 \theta}$ $=\frac{\cos \theta}{\sin \theta} = \cot \theta$ Hence, the correct answer is $\cot \theta$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Simplify $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$.
Option 1: $1-\tan ^2 \theta$
Option 2: $\tan ^2 \theta-1$
Option 3: $\cot ^2 \theta-1$
Option 4: $1-\cot ^2 \theta$
Question : $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}}+\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$ is equal to:
Option 1: $2\cos\theta$
Option 2: $2\sin\theta$
Option 3: $2\cot\theta$
Option 4: $2\sec\theta$
Question : Find the value of $\left(\tan ^2 \theta+\tan ^4 \theta\right)$.
Option 1: $\cot ^2 \theta-\tan ^2 \theta$
Option 2: $\ {\sec}^4 \theta-\ {\sec}^2 \theta$
Option 3: $\ {\sec}^4 \theta-\ {\sec}^4 \theta$
Option 4: $ \ {\sec}^4 \theta+\ {\sec}^2 \theta$
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Option 1: $1+2 \sqrt{3}$
Option 2: $\frac{1+2 \sqrt{3}}{3}$
Option 3: $\frac{2+\sqrt{3}}{3}$
Option 4: $2+\sqrt{3}$
Question : If $\cos ^2 \theta-\sin ^2 \theta=\tan ^2 \phi$, then which of the following is true?
Option 1: $\cos \theta \cos \phi=1$
Option 2: $\cos ^2 \phi-\sin ^2 \phi=\tan ^2 \theta$
Option 3: $\cos ^2 \phi-\sin ^2 \phi=\cot ^2 \theta$
Option 4: $\cos \theta \cos \phi=\sqrt{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile