Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Option 1: $\frac{1}{8}$
Option 2: $-\frac{1}{4}$
Option 3: $\frac{1}{4}$
Option 4: $-\frac{1}{8}$
Correct Answer: $-\frac{1}{8}$
Solution : Given: $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ = $\frac{(\frac{1}{2})^2+(\frac{1}{2})^2 - \sec 35^{\circ} \cdot \sin (90-35)^{\circ}}{2+2}$ = $\frac{(\frac{1}{4})+(\frac{1}{4}) - \sec 35^{\circ} \cdot \cos 35^{\circ}}{2+2}$ = $\frac{(\frac{2}{4}) - (\frac{1}{ \cos 35^{\circ}}) \cdot \cos 35^{\circ}}{4}$ = $\frac{(\frac{2}{4}) - 1}{4}$ = $-\frac{1}{8}$ Hence, the correct answer is $-\frac{1}{8}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}+\sec 45^{\circ} × \sin 45^{\circ}}{\sec 60^{\circ}+{\text{cosec}} 30^{\circ}}$ is:
Option 1: $\frac{1}{4}$
Option 2: $-\frac{3}{8}$
Option 3: $\frac{3}{8}$
Option 4: $-\frac{1}{4}$
Question : Evaluate $\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}$
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 1
Question : What is the value of the following in terms of trigonometric ratios? $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}$
Option 1: $2\operatorname{cosec A}$
Option 2: $2\operatorname{cos A}$
Option 3: $2\operatorname{sec A}$
Option 4: $2\operatorname{sin A}$
Question : Find the value of $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$.
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Option 1: $\frac{4+\sqrt{2}}{2}$
Option 2: $\frac{2+\sqrt{3}}{2}$
Option 3: $\frac{4+\sqrt{3}}{2}$
Option 4: $\frac{2+\sqrt{2}}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile