JEE Advanced 2026: Syllabus | Preparation Tips | Chapter-Wise Weightage | AAT-Syllabus
JEE Advanced: Question Paper 2025 | Sample Paper 2026 | Paper 1 and 2 Analysis 2025
e) Phenols
Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.
f) Characteristic reactions of the following (including those mentioned above)
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of
alcohols into aldehydes and ketones; Ethers: Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic
addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo
coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine
substitution).
g) Carbohydrates
Classification; mono- and di-saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.
h) Amino acids and peptides
General structure (only primary structure for peptides) and physical properties.
i) Properties and uses of some important polymers
Natural rubber, cellulose, nylon, teflon and PVC.
j) Practical organic chemistry
Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical methods of separation of mono-functional organic
compounds from binary mixtures.
3) MATHEMATICS
a) Algebra
Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations. Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots. Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers. Logarithms and their properties. Permutations and combinations, binomial theorem for a positive integral index, properties of binomial coefficients.
b) Matrices
Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three,
properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.
c) Probability
Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations.
d) Trigonometry
Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations. Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).
e) Analytical geometry
Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin. Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle. Equation of a circle in various forms, equations of tangent, normal and chord. Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle
and a straight line. Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal. Locus problems. Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.
f) Differential calculus
Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions. Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions. Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions. Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions. Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s theorem and Lagrange’s mean value theorem.
g) Integral calculus
Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, fundamental theorem of integral calculus. Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves. Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations.
h) Vectors
Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations.
4) ARCHITECTURE APTITUDE TEST
a) Freehand drawing
This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or day-to-day life usable objects like furniture, equipment, etc., from memory.
b) Geometrical drawing
Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles, etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders, etc.
c) Three-dimensional perception
Understanding and appreciation of three-dimensional forms with building elements, colour, volume and orientation. Visualization through structuring objects in memory.
d) Imagination and aesthetic sensitivity
Composition exercise with given elements. Context mapping. Creativity check through innovative uncommon test with familiar objects. Sense of colour grouping or application.
e) Architectural awareness
General interest and awareness of famous architectural creations – both national and international, places and personalities (architects, designers, etc.) in the related domain.
Hope this helps.
Cheers!
Explore JEE Advanced chapter-wise weightage to identify high-scoring topics in Physics, Chemistry & Maths. Plan smarter and boost your exam preparation.
Hello dear,
I am providing you the topics of jee advanced syllabus subject wise-
Physics-
General
Units and dimensions, dimensional analysis; least count, significant figures; Methods of
measurement and error analysis for physical quantities pertaining to the following
experiments: Experiments based on using Vernier calipers and screw gauge
(micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s
method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and
a convex lens using u-v method, Speed of sound using resonance column, Verification of
Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire
using meter bridge and post office box.
Mechanics
Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform
circular motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static
and dynamic friction; Kinetic and potential energy; Work and power; Conservation of
linear momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic
collisions.
Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion
of planets and satellites in circular orbits; Escape velocity.
Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of
inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque;
Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation;
Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies;
Collision of point masses with rigid bodies.
Linear and angular simple harmonic motions.
Hooke’s law, Young’s modulus.
Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary
rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity,
Streamline flow, equation of continuity, Bernoulli’s theorem and its applications.
Wave motion (plane waves only), longitudinal and transverse waves, superposition of
waves; Progressive and stationary waves; Vibration of strings and air columns;
Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).
Thermal physics
Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction
in one dimension; Elementary concepts of convection and radiation; Newton’s law of
cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases);
Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and
work; First law of thermodynamics and its applications (only for ideal gases); Blackbody
radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law,
Stefan’s law.
Electricity and magnetism
Coulomb’s law; Electric field and potential; Electrical potential energy of a system of
point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines;
Flux of electric field; Gauss’s law and its application in simple cases, such as, to find
field due to infinitely long straight wire, uniformly charged infinite plane sheet and
uniformly charged thin spherical shell.
Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series
and parallel; Energy stored in a capacitor.
Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells;
Kirchhoff’s laws and simple applications; Heating effect of current.
Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight
wire, along the axis of a circular coil and inside a long straight solenoid; Force on a
moving charge and on a current-carrying wire in a uniform magnetic field.
Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop;
Moving coil galvanometer, voltmeter, ammeter and their conversions.
Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC,
LR and LC circuits with d.c. and a.c. sources.
Optics
Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces;
Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses;
Combinations of mirrors and thin lenses; Magnification.
Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit
experiment.
Modern physics
Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Half-
life and mean life; Binding energy and its calculation; Fission and fusion processes;
Energy calculation in these processes.
Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous
X-rays, Moseley’s law; de Broglie wavelength of matter waves.
For chemistry and mathematics you can prefer the link provided -
https://jeeadv.ac.in/examination/syllabus.html
Eligibility | Application | Exam Pattern | Admit Card | Preparation Tips | Answer Key | Result | Accepting Colleges
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile