Question : What is the equation of the line if its slope is $\frac{–2}{5}$ and it passes through the point $(1,–3)$?
Option 1: $2x+5y=17$
Option 2: $2x–5y=–13$
Option 3: $2x–5y=17$
Option 4: $2x+5y=–13$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2x+5y=–13$
Solution : Given: Slope = $-\frac{2}{5}$ Passing through the point $(1,–3)$. The equation of the line with slope $m$ is $y=mx+c$ Putting the values of $m$ and $(x,y)$, ⇒ $ –3= -\frac{2}{5}×1+c$ ⇒ $c= \frac{2}{5}-3$ ⇒ $c=-\frac{13}{5}$ So, the equation is $y=-\frac{2}{5}x+(-\frac{13}{5})$ ⇒ $5y=–2x–13$ ⇒ $2x+5y=–13$ Hence, the correct answer is $2x+5y=–13$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : A line passing through the origin perpendicularly cuts the line $3x–2y=6$ at point M. Find the co-ordinates of M.
Option 1: $(\frac{18}{13},\frac{12}{13})$
Option 2: $(\frac{18}{13},-\frac{12}{13})$
Option 3: $(-\frac{18}{13},-\frac{12}{13})$
Option 4: $(-\frac{18}{13},\frac{12}{13})$
Question : If $2x-2(3+4x)<-1-2x>\frac{-5}{3}-\frac{x}{3}$; then $x$ can take which of the following values?
Option 1: 1
Option 2: 2
Option 3: –2
Option 4: –1
Question : The arrangement of the fractions $\frac{4}{3}, -\frac{2}{9}, -\frac{7}{8}, \frac{5}{12}$ in ascending order is _____.
Option 1: $–\frac{7}{8}, –\frac{2}{9}, \frac{5}{12}, \frac{4}{3}$
Option 2: $–\frac{7}{8}, –\frac{2}{9}, \frac{4}{3}, \frac{5}{12}$
Option 3: $–\frac{2}{9}, –\frac{7}{8}, \frac{5}{12}, \frac{4}{3}$
Option 4: $–\frac{2}{9}, –\frac{7}{8}, \frac{4}{3}, \frac{5}{12}$
Question : The graph of the linear equation $y = x$ passes through which points?
Option 1: $(0,\frac{3}{2})$
Option 2: $(1,1)$
Option 3: $(-\frac{1}{2},\frac{1}{2})$
Option 4: $( \frac{3}{2},-\frac{3}{2})$
Question : If $x=5–\sqrt{21}$, the value of $\frac{\sqrt{x}}{\sqrt{32–2x}–\sqrt{21}}$ is:
Option 1: $\frac{1}{\sqrt2}(\sqrt{3}–\sqrt{7})$
Option 2: $\frac{1}{\sqrt2}(\sqrt{7}–\sqrt{3})$
Option 3: $\frac{1}{\sqrt2}(\sqrt{7}+\sqrt{3})$
Option 4: $\frac{1}{\sqrt2}(7–\sqrt{3})$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile