18 Views

Question : What is the LCM of $a^3b-ab^3,a^3b^2-a^2b^3, ab(a-b)$?

Option 1: $a^2 b^2\left(a^2+b^2\right)$

Option 2: $a^2 b^2\left(a^2-b^2\right)$

Option 3: $a^2 b^3\left(a^2+b^2\right)$

Option 4: $a^3 b^2\left(a^2-b^2\right)$


Team Careers360 23rd Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $a^2 b^2\left(a^2-b^2\right)$


Solution : To find the LCM of the given expressions, we first factorize them:
1. $a^3b-ab^3 = ab(a^2-b^2) = ab(a-b)(a+b)$
2. $a^3b^2-a^2b^3 = a^2b^2(a-b)$
3. $ab(a-b)$
Now, the LCM of these expressions is the product of the highest powers of all factors present in any of the expressions.
$\therefore$ LCM $=a^2b^2(a-b)(a+b)=a^2b^2(a^2-b^2)$
Hence, the correct answer is $a^2b^2(a^2-b^2)$.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books