Question : What is the possible value of (a + b + c) – 3, if a2 + b2 + c2 = 9 and ab + bc + ca = 8?
Option 1: 5
Option 2: 3
Option 3: 9
Option 4: 2
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 2
Solution : Given: $a^2 + b^2 + c^2 = 9$ and $ab + bc + ca = 8$ We know, $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)$ ⇒ $(a+b+c)^2=9+2\times 8$ ⇒ $(a+b+c)^2=9+16$ ⇒ $a+b+c=\sqrt{25}=5$ $\therefore$ $(a+b+c)-3 = 5-3 = 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If a + b + c = 1, ab + bc + ca = –22 and abc = –40, then what is the value of a3 + b3 + c3 ?
Option 1: 67
Option 2: –53
Option 3: –51
Option 4: 27
Question : What is the value of a2 + b2 + c2, if a + b + c = 9 and ab + bc + ca = 23 ?
Option 1: 22
Option 2: 32
Option 3: 49
Option 4: 35
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Option 1: 0
Option 2: 1
Option 3: –1
Question : a3 – b3 = 91 and a – b = 1, what is the value of (ab)?
Option 1: 27
Option 2: 6
Option 4: 30
Question : If 847 × 385 × 675 × 3025 = 3a × 5b × 7c × 11d, then the value of ab – cd is:
Option 1: 4
Option 2: 5
Option 3: 1
Option 4: 7
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile