Question : What is the simplified value of: $\frac{1}{8}\left\{\left(x+\frac{1}{y}\right)^2-\left(x-\frac{1}{y}\right)^2\right\}$
Option 1: $\frac{x}{y}$
Option 2: $\frac{2x}{y}$
Option 3: $\frac{x}{2y}$
Option 4: $\frac{4x}{y}$
Correct Answer: $\frac{x}{2y}$
Solution : $\frac{1}{8}\left\{\left(x+\frac{1}{y}\right)^2-\left(x-\frac{1}{y}\right)^2\right\}$ $=\frac{1}{8}(x^2 +\frac{1}{y^2} + 2×x×\frac{1}{y} - x^2 - \frac{1}{y^2} + 2×x×\frac{1}{y})$ $=\frac{1}{8}(\frac{4x}{y})$ $=\frac{x}{2y}$ Hence, the correct answer is $\frac{x}{2y}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Simplify the given expression. $(x - 2y)(y - 3x) + (x + y)(x - y) + (x - 3y)(2x + y)$
Option 1: $2y(x - 3y)$
Option 2: $2y(x + 3y)$
Option 3: $2x(x - 3y)$
Option 4: $2x(x + 3y)$
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$, where $x \neq y \neq z$, is:
Option 1: $0$
Option 2: $\frac{1}{(x+y+z)}$
Option 3: $\frac{1}{(x+y)(y+z)(z+x)}$
Option 4: $1$
Question : What is $\frac{\left (x^{2}-y^{2} \right)^{3}+\left (y^{2}-z^{2} \right )^{3}+\left (z^{2}-x^{2} \right )^{3}}{\left (x-y \right)^{3}+\left (y-z \right )^{3}+\left (z-x \right)^{3}}?$
Option 1: $\frac{(x+y)(y+z)}{(x+z)}$
Option 2: $(x+y)^3(y+z)^3(z+x)^3$
Option 3: $(x+y)(y+z)(z+x)$
Option 4: $(x+y)(y+z)$
Question : If $\frac{x^{2}-x+1}{x^{2}+x+1}=\frac{2}{3}$, then the value of $\left (x+\frac{1}{x} \right)$ is:
Option 1: 4
Option 2: 5
Option 3: 6
Option 4: 8
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Option 1: $\frac{5}{13}$
Option 2: $\frac{4}{13}$
Option 3: $\frac{8}{13}$
Option 4: $\frac{6}{13}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile