Question : What is the value of $\frac{\tan 45^{\circ}-\tan 15^{\circ}}{1+\tan 45^{\circ} \tan 15^{\circ}}$?
Option 1: $\sqrt{3}$
Option 2: $\frac{1}{\sqrt{2}}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: ${\sqrt{2}}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{1}{\sqrt{3}}$
Solution : $\frac{\tan 45^{\circ}-\tan 15^{\circ}}{1+\tan 45^{\circ} \tan 15^{\circ}}$ $= \tan (45^{\circ}-15^{\circ})$ $=\tan 30^{\circ}$ $= \frac{1}{\sqrt3}$ Hence, the correct answer is $\frac{1}{\sqrt3}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $\frac{1}{1-\sqrt{3}}$
Option 3: $\frac{\sqrt{3}}{2}$
Option 4: $\frac{2}{\sqrt{3}}$
Question : If $x\cos^{2}30^{\circ}\cdot \sin60^{\circ}=\frac{\tan^{2}45^{\circ}\cdot \sec60^{\circ}}{\operatorname{cosec}60^{\circ}}$, then the value of $x$ is:
Option 3: $2\frac{2}{3}$
Option 4: $\frac{1}{2}$
Question : Find the value of the given expression. $\frac{4}{3} \tan^2 45^{\circ}+3 \cos^2 30^{\circ}-2 \sec^2 30^{\circ}-\frac{3}{4} \cot^2 60^{\circ}$
Option 1: $\frac{2}{3}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{\sqrt{2}}{3}$
Option 4: $\frac{3}{\sqrt{2}}$
Question : What is the value of $\sin 30^{\circ}+\cos 30^{\circ}+\tan 30^{\circ}$?
Option 1: $\frac{5+\sqrt{3}}{2 \sqrt{3}}$
Option 2: $\frac{5-\sqrt{3}}{2 \sqrt{3}}$
Option 3: $\frac{5+\sqrt{3}}{\sqrt{3}}$
Option 4: $\frac{5-\sqrt{3}}{\sqrt{3}}$
Question : What is the value of $\sin 75^{\circ}+\sin 15^{\circ}$?
Option 1: $\frac{1}{\sqrt{2}}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\sqrt{\frac{3}{2}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile