Question : What is the value of $\operatorname{cos}\left(-\frac{17 \pi}{3}\right)$?
Option 1: $1$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{1}{2}$
Option 4: $0$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{1}{2}$
Solution : $\operatorname{cos}\left(-\frac{17 \pi}{3}\right)$ $=\operatorname{cos}\left(\frac{17 \pi}{3}\right)$ $=\operatorname{cos}\left(\frac{17\times 180º}{3}\right)$ $=\operatorname{cos}\left(17\times 60º\right)$ $=\operatorname{cos}\left(1020º\right)$ $=\operatorname{cos}\left(90º\times 11+30º\right)$ $=\operatorname{sin}\left(30º\right)$ $=\frac{1}{2}$ Hence, the correct answer is $\frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Option 1: $\cos \left(\frac{\pi}{3}-x\right)$
Option 2: $\sin \left(\frac{\pi}{3}+x\right)$
Option 3: $\cos \left(\frac{\pi}{3}+x\right)$
Option 4: $\sin \left(\frac{\pi}{3}-x\right)$
Question : $\cos \left(30^{\circ}+\theta\right)-\sin \left(60^{\circ}-\theta\right)=$ _____________.
Option 1: $\frac{\sqrt{3}}{2}$
Option 2: $0$
Option 4: $\frac{1}{\sqrt{2}}$
Question : If $\cos \left(2 \theta+54^{\circ}\right)=\sin \theta, 0^{\circ}<\left(2 \theta+54^{\circ}\right)<90^{\circ}$, then what is the value of $\frac{1}{\tan 5 \theta+\operatorname{cosec} \frac{5 \theta}{2}}$?
Option 1: $3\sqrt2$
Option 2: $2-\sqrt{3}$
Option 3: $2\sqrt3$
Option 4: $2+\sqrt{3}$
Question : If $\sin \theta-\cos \theta=0$, then find the value of $\left(\sin^3 \theta-\cos^3 \theta\right)$.
Option 1: $0$
Option 2: $2$
Option 3: $1$
Question : If $\sec x- \cos x$ = 4, then what will be the value of $\frac{\left(1+\cos ^2x\right)}{\cos x}?$
Option 1: $\frac{9}{4}$
Option 2: $\frac{1}{4}$
Option 3: $2\sqrt{5}$
Option 4: $\sqrt{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile