Question : Which of the following options gives an expression equivalent to $\sin \ (A + B)$?
Option 1: $\cos\ A \cos\ B - \sin \ A \sin \ B$
Option 2: $\sin\ A \cos \ B + \cos\ A\ \sin \ B$
Option 3: $\cos \ A \cos\ B+\sin\ A \sin \ B$
Option 4: $\sin \ A \cos \ B - \cos \ A \sin \ B$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\sin\ A \cos \ B + \cos\ A\ \sin \ B$
Solution : Given: $\sin \ (A + B)$ We know the formula, $\sin\ (A + B) = (\sin\ A \cos\ B + \cos\ A\ \sin\ B)$ Hence, the correct answer is $(\sin\ A \cos \ B + \cos \ A\ \sin \ B)$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Solve the following to find its value in terms of trigonometric ratios. $(\sin A + \cos A)(1 - \sin A \cos A)$
Option 1: $\sin^3A+\cos^3A$
Option 2: $\sin^2A-\cos^2A$
Option 3: ${[\cos A-\sin A]\left[\sin ^2 A+\cos ^2 A\right]}$
Option 4: $\sin^3A-\cos^3A$
Question : Which of the following is equal to $\sec A – \cos A$?
Option 1: $\sin A\cot A$
Option 2: $\cot A\ cos A$
Option 3: $\tan A\sin A$
Option 4: $\cos A\sin A$
Question : What is the value of the expression $\cos 2 A \cos 2 B+\sin ^2(A-B)-\sin ^2(A+B)$?
Option 1: $\sin (2 A-2 B)$
Option 2: $\sin (2 A+2 B)$
Option 3: $\cos (2 A+2 B)$
Option 4: $\cos (2 A-2 B)$
Question : Simplify the following expression. $\frac{\sin \theta - 2 \sin ^3 \theta}{2 \cos ^3 \theta - \cos \theta}$
Option 1: $\tan \theta$
Option 2: $\sin \theta$
Option 3: $\sec \theta$
Option 4: $\cos \theta$
Question : Find the value of the following expression. $5\left(\sin ^4 \theta+\cos ^4 \theta\right)+3\left(\sin ^6 \theta+\cos ^6 \theta\right)+19 \sin ^2 \theta \cos ^2 \theta$
Option 1: 8
Option 2: 5
Option 3: 6
Option 4: 7
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile