JEE Main 2026: Preparation Tips & Study Plan | Previous 10 Year Questions
JEE Main 2026: 100 Days Study Plan | High Scoring Chapters and Topics | Preparation Tips
JEE Main 2025 Most Scoring Concept: January Session | April Session
Don't Miss: Best Public Engineering Colleges | Top 30 Most Repeated Questions & Topics
Solution :
Required number of ways
= coefficient of x16 in (x3+x4+x5+.......x7)4
= coefficient of x16 in x12(1+x+x2+.......x4)4
= coefficient of x16 in x12(1−x5)4(1−x)−4
= coefficient of x4 in (1−x5)4(1−x)−4
= coefficient of x4 in (1−4x5+.....)
[1+4x+....+(r+1)(r+2)(r+3)3!x]
= (4+1)(4+2)(4+3)3! = 35
Aliter: Remaining 4 rupees can be distributed in 4+4−1C4−1 i.e., 35 ways
B.Tech/B.Arch Admissions OPEN
This can be mathematically formulated as
w+x+y+z=16 and each of them is greater or equal to 3 and we need to find number of all possible values of x w x y and z.
The number of non negative integral solution to the equation: (x1)+(x2)+(x3)+.....(xr)=n is given as (n+r-1)C(r-1)
Using above formula we will make a simple assumption
a=w-3, b=x-3, c=y-3 and d=z-3
So now the equation reduces
a+b+c+d=4
Solution is 7C3 that is 35
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Answer Key | Eligibility | Application | Preparation Tips | Question Paper | Admit Card | Result | Accepting Colleges
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile