333 Views

show that the number of equivalence relation in the set(1,2,3) containing (1,2) and (2,1) is two


sanya kamboj 14th Mar, 2020
Answer (1)
Mohit Sinha 17th Mar, 2020

A relation is an equivalence relation if it is reflexive, transitive and symmetric.

Any equivalence relation RR on {1,2,3}{1,2,3}

  1. must contain (1,1),(2,2),(3,3)(1,1),(2,2),(3,3)
  2. must satisfy: if (x,y)∈R(x,y)∈R then (y,x)∈R(y,x)∈R
  3. must satisfy: if (x,y)∈R,(y,z)∈R(x,y)∈R,(y,z)∈R then (x,z)∈R(x,z)∈R

Since (1,1),(2,2),(3,3)(1,1),(2,2),(3,3) must be there is RR , we now need to look at the remaining pairs (1,2),(2,1),(2,3),(3,2),(1,3),(3,1)(1,2),(2,1),(2,3),(3,2),(1,3),(3,1) . By symmetry, we just need to count the number of ways in which we can use the pairs (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) to construct equivalence relations. This is because if (1,2)(1,2) is in the relation then (2,1)(2,1) must be there in the relation.

Notice that the relation will be an equivalence relation if we use none of these pairs (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) . There is only one such relation:

  • {(1,1),(2,2),(3,3)}{(1,1),(2,2),(3,3)}

or we use exactly one pair from (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) . In this case, we can have three possible equivalence relations:

  • {(1,1),(2,2),(3,3),(1,2),(2,1)}{(1,1),(2,2),(3,3),(1,2),(2,1)}
  • {(1,1),(2,2),(3,3),(1,3),(3,1)}{(1,1),(2,2),(3,3),(1,3),(3,1)}
  • {(1,1),(2,2),(3,3),(2,3),(3,2)}{(1,1),(2,2),(3,3),(2,3),(3,2)}

or when we use all all three pairs (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) to get the following relation:

  • {(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}

We can’t pick just two pairs from the set {(1,2),(2,3),(1,3)}{(1,2),(2,3),(1,3)} and form an equivalence relation because such a relation would violate transitivity. For example, if we pick only (1,2)(1,2) and (1,3)(1,3) , then by symmetry we must also have (3,1)(3,1) in the relation. Now by transitivity (3,2)(3,2) must be there, and hence (2,3)(2,3) should be there by symmetry.

Therefore, we have 5 equivalence relations on the set {1,2,3}{1,2,3} . Out of those there are only two of them that contains (1,2)(1,2) and (2,1)(2,1) .

  1. {(1,1),(2,2),(3,3),(1,2),(2,1)}{(1,1),(2,2),(3,3),(1,2),(2,1)}
  2. {(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}


JEE Main 2025 College Predictor

Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.

Use Now

Know More About

Related Questions

Amity University Noida B.Tech...
Apply
Among Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
Graphic Era (Deemed to be Uni...
Apply
NAAC A+ Grade | Among top 100 universities of India (NIRF 2024) | 40 crore+ scholarships distributed
UPES B.Tech Admissions 2025
Apply
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 23rd June
Geeta University B.Tech Admis...
Apply
70+ Programs | 40 LPA-Highest Package Offered | Up to 100% Scholarship worth 24 Crore
Chandigarh University Admissi...
Apply
Ranked #1 Among all Private Indian Universities in QS Asia Rankings 2025 | Scholarships worth 210 CR
Shoolini University Admission...
Apply
NAAC A+ Grade | Ranked No.1 Private University in India (QS World University Rankings 2025)
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books